1,464 research outputs found

    Electro-optic coupling of wide wavelength range in linear chirped-periodically poled lithium niobate and its applications

    Get PDF
    We theoretically investigate the electro-optic coupling in an optical superlattice of linear chirped-periodically poled lithium niobate. It is found that the electro-optic coupling in such optical superlattice can work in a wide wavelength range. Some of examples, with bandwidths of 20, 40, 80, 120nm, are demonstrated. The way to determine the electric field for perfect conversion between o- and e-ray and the method using apodized crystals of tanh profile to reduce the ripples are shown. As one of its applications, one kind of broadband Solc-type bandpass filter in optical communication range is proposed. (C) 2010 Optical Society of Americ

    Complexation and coacervation of like-charged polyelectrolytes inspired by mussels

    Get PDF
    It is well known that polyelectrolyte complexes and coacervates can form on mixing oppositely charged polyelectrolytes in aqueous solutions, due to mainly electrostatic attraction between the oppositely charged polymers. Here, we report the first (to the best of our knowledge) complexation and coacervation of two positively charged polyelectrolytes, which provides a new paradigm for engineering strong, self-healing interactions between polyelectrolytes underwater and a new marine mussel-inspired underwater adhesion mechanism. Unlike the conventional complex coacervate, the like-charged coacervate is aggregated by strong short-range cation-p interactions by overcoming repulsive electrostatic interactions. The resultant phase of the like-charged coacervate comprises a thin and fragile polyelectrolyte framework and round and regular pores, implying a strong electrostatic correlation among the polyelectrolyte frameworks. The like-charged coacervate possesses a very low interfacial tension, which enables this highly positively charged coacervate to be applied to capture, carry, or encapsulate anionic biomolecules and particles with a broad range of applications.113320Ysciescopu

    Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells

    Get PDF
    Epstein-Barr virus (EBV) is implicated as an aetiological factor in B lymphomas and nasopharyngeal carcinoma. The mechanisms of cell-free EBV infection of nasopharyngeal epithelial cells remain elusive. EBV glycoprotein B (gB) is the critical fusion protein for infection of both B and epithelial cells, and determines EBV susceptibility of non-B cells. Here we show that neuropilin 1 (NRP1) directly interacts with EBV gB 23-431. Either knockdown of NRP1 or pretreatment of EBV with soluble NRP1 suppresses EBV infection. Upregulation of NRP1 by overexpression or EGF treatment enhances EBV infection. However, NRP2, the homologue of NRP1, impairs EBV infection. EBV enters nasopharyngeal epithelial cells through NRP1-facilitated internalization and fusion, and through macropinocytosis and lipid raft-dependent endocytosis. NRP1 partially mediates EBV-activated EGFR/RAS/ERK signalling, and NRP1-dependent receptor tyrosine kinase (RTK) signalling promotes EBV infection. Taken together, NRP1 is identified as an EBV entry factor that cooperatively activates RTK signalling, which subsequently promotes EBV infection in nasopharyngeal epithelial cells. Š 2014 Macmillan Publishers Limited. All rights reserved.published_or_final_versio

    Interval valued (\in,\ivq)-fuzzy filters of pseudo BLBL-algebras

    Full text link
    We introduce the concept of quasi-coincidence of a fuzzy interval value with an interval valued fuzzy set. By using this new idea, we introduce the notions of interval valued (\in,\ivq)-fuzzy filters of pseudo BLBL-algebras and investigate some of their related properties. Some characterization theorems of these generalized interval valued fuzzy filters are derived. The relationship among these generalized interval valued fuzzy filters of pseudo BLBL-algebras is considered. Finally, we consider the concept of implication-based interval valued fuzzy implicative filters of pseudo BLBL-algebras, in particular, the implication operators in Lukasiewicz system of continuous-valued logic are discussed

    A Study of Brain Networks Associated with Swallowing Using Graph-Theoretical Approaches

    Get PDF
    Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI) was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two adult healthy subjects (all females, 23.1¹1.52 years of age). To construct these functional connections, we computed mean partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network, although varying in some degree, had typical small-world properties as compared to regular networks and random networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related brain regions also had higher values for some of the network measures in comparison to when these measures were calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a potential tool for understanding the neural basis of dysphagia. Š 2013 Luan et al

    Magnetic Properties of FePt Nanoparticles Prepared by a Micellar Method

    Get PDF
    FePt nanoparticles with average size of 9 nm were synthesized using a diblock polymer micellar method combined with plasma treatment. To prevent from oxidation under ambient conditions, immediately after plasma treatment, the FePt nanoparticle arrays were in situ transferred into the film-growth chamber where they were covered by an SiO2 overlayer. A nearly complete transformation of L10 FePt was achieved for samples annealed at temperatures above 700 °C. The well control on the FePt stoichiometry and avoidance from surface oxidation largely enhanced the coercivity, and a value as high as 10 kOe was obtained in this study. An evaluation of magnetic interactions was made using the so-called isothermal remanence (IRM) and dc-demagnetization (DCD) remanence curves and Kelly–Henkel plots (ΔM measurement). The ΔM measurement reveals that the resultant FePt nanoparticles exhibit a rather weak interparticle dipolar coupling, and the absence of interparticle exchange interaction suggests no significant particle agglomeration occurred during the post-annealing. Additionally, a slight parallel magnetic anisotropy was also observed. The results indicate the micellar method has a high potential in preparing FePt nanoparticle arrays used for ultrahigh density recording media

    Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo

    Get PDF
    Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages

    Gene ontology based transfer learning for protein subcellular localization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction of protein subcellular localization generally involves many complex factors, and using only one or two aspects of data information may not tell the true story. For this reason, some recent predictive models are deliberately designed to integrate multiple heterogeneous data sources for exploiting multi-aspect protein feature information. Gene ontology, hereinafter referred to as <it>GO</it>, uses a controlled vocabulary to depict biological molecules or gene products in terms of biological process, molecular function and cellular component. With the rapid expansion of annotated protein sequences, gene ontology has become a general protein feature that can be used to construct predictive models in computational biology. Existing models generally either concatenated the <it>GO </it>terms into a flat binary vector or applied majority-vote based ensemble learning for protein subcellular localization, both of which can not estimate the individual discriminative abilities of the three aspects of gene ontology.</p> <p>Results</p> <p>In this paper, we propose a Gene Ontology Based Transfer Learning Model (<it>GO-TLM</it>) for large-scale protein subcellular localization. The model transfers the signature-based homologous <it>GO </it>terms to the target proteins, and further constructs a reliable learning system to reduce the adverse affect of the potential false <it>GO </it>terms that are resulted from evolutionary divergence. We derive three <it>GO </it>kernels from the three aspects of gene ontology to measure the <it>GO </it>similarity of two proteins, and derive two other spectrum kernels to measure the similarity of two protein sequences. We use simple non-parametric cross validation to explicitly weigh the discriminative abilities of the five kernels, such that the time & space computational complexities are greatly reduced when compared to the complicated semi-definite programming and semi-indefinite linear programming. The five kernels are then linearly merged into one single kernel for protein subcellular localization. We evaluate <it>GO-TLM </it>performance against three baseline models: <it>MultiLoc, MultiLoc-GO </it>and <it>Euk-mPLoc </it>on the benchmark datasets the baseline models adopted. 5-fold cross validation experiments show that <it>GO-TLM </it>achieves substantial accuracy improvement against the baseline models: 80.38% against model <it>Euk-mPLoc </it>67.40% with <it>12.98% </it>substantial increase; 96.65% and 96.27% against model <it>MultiLoc-GO </it>89.60% and 89.60%, with <it>7.05% </it>and <it>6.67% </it>accuracy increase on dataset <it>MultiLoc plant </it>and dataset <it>MultiLoc animal</it>, respectively; 97.14%, 95.90% and 96.85% against model <it>MultiLoc-GO </it>83.70%, 90.10% and 85.70%, with accuracy increase <it>13.44%</it>, <it>5.8% </it>and <it>11.15% </it>on dataset <it>BaCelLoc plant</it>, dataset <it>BaCelLoc fungi </it>and dataset <it>BaCelLoc animal </it>respectively. For <it>BaCelLoc </it>independent sets, <it>GO-TLM </it>achieves 81.25%, 80.45% and 79.46% on dataset <it>BaCelLoc plant holdout</it>, dataset <it>BaCelLoc plant holdout </it>and dataset <it>BaCelLoc animal holdout</it>, respectively, as compared against baseline model <it>MultiLoc-GO </it>76%, 60.00% and 73.00%, with accuracy increase <it>5.25%</it>, <it>20.45% </it>and <it>6.46%</it>, respectively.</p> <p>Conclusions</p> <p>Since direct homology-based <it>GO </it>term transfer may be prone to introducing noise and outliers to the target protein, we design an explicitly weighted kernel learning system (called Gene Ontology Based Transfer Learning Model, <it>GO-TLM</it>) to transfer to the target protein the known knowledge about related homologous proteins, which can reduce the risk of outliers and share knowledge between homologous proteins, and thus achieve better predictive performance for protein subcellular localization. Cross validation and independent test experimental results show that the homology-based <it>GO </it>term transfer and explicitly weighing the <it>GO </it>kernels substantially improve the prediction performance.</p
    • …
    corecore